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We investigate the Hopf bifurcation for a five species chemical ring network with an auto- 
catalytic reaction. We show that the bifurcation hypersurface in the rate constants space is 
the boundary of a simply connected set. We use a numerical method to calculate this hyper- 
surface. 

1. I n t r o d u c t i o n  

Nonlinear  ordinary differential equations (ODE) may show interesting behav- 
ior like limit cycles (also known as self-oscillations) and chaos [1]. The implications 
of  this kind of  behavior for chemical and biological systems have already been 
discussed [2]. 

In particular, self-oscillatory biological systems are important  as they may play 
the role of biological clocks [2]. Self-oscillations also seem to be important  in cellu- 
lar signaling process [3-5]. 

Mathematically,  limit cycles often appear as solutions of  ODEs through the so- 
called Hopfbifurcat ion [1]. 

In this paper we calculate the complete set of  H o p f  bifurcation for a particular 
ODE system for the whole space of parameters. It is shown that  the system presents 
H o p f  bifurcation in the boundaries of  a simply connected set in the parameters 
space. 

The ODE system we have studied arises in the context of  active t ransport  in bio- 
membranes  [6,7]. It is the dynamic equation of  a chemical ring reaction network. 
Indeed, this chemical network is an extreme current of  a larger network. Extreme 
currents are a major feature of stoichiometric network analysis developed by 
Clarke to study complex reaction networks [8]. This method  is based on the decom- 
posit ion of  complex reaction networks to simpler ones (the extreme currents) which 
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can be more readily analyzed. If one extreme current leads to instability then the 
whole system may become unstable by an appropriate choice of parameters. 

The present reaction network seems to be important because it is the fundamen- 
tal extreme network behind many different networks arising in active transport 
models [6,7]. The complete characterization of its Hopf bifurcation set is then 
worthwhile. 

This paper is essentially analytical and we have employed computer algebra pro- 
grams extensively. The final calculation of the Hopf  bifurcation set has been done 
through numerical continuation methods [9,10]. 

2. The equations 

In this paper we will show that it is possible to determine the complete set of 
Hopf  bifurcation from a special chemical network. This chemical network is com- 
posed of five species and five reactions, namely, 

A I ~ W, 

W --~b' C I 

C' ~ D ' ,  

D' ~'t' E' 

A' + E' e" 2A',  

where A', B', C', D', and E' are the chemical species and the symbols over the 
arrows denote the rate constant of each reaction. 

The system of differential equations associated with this network is 

~1' = - a .  A' + e" . A' .  E ' ,  

g = a . A ' - b ' . f f  , 

C '  = b'  . B '  - c'  . C ' ,  

D '  = c' . C I -  d '  . D '  , 

E l =  d ' . D ' -  e " . A ' . E  I ,  



F.M. C. Vieira, P.M. Bisch / Hopfbifurcation 57 

where A I, B I, C l, D I, and E I are the concentrations of the respective species. Here, 
the dot  means derivative with respect to tq 

The different species represent different states of a single kind of  protein whose 
total concentrat ion is constant, that  is T I = A t + B I + C I + D t + Eq 

We can rescale the system setting b = hi~a, c = d / a ,  d = d l / a ,  d = e l ' /a  and 
t = d / a .  This t ransformation is, of course, simply a scale change, not  affecting the 
main features of the system. 

The system becomes 

j f  = _A I + e I .A I . E  I ' 

B ' =  A I _ b . B  ' ,  

U = b . f f  - c .  C l ,  

D / =  c- C I -  d . D  l, 

E I = d .  D I -  e I .  A I.  U ;  

now, the dot  means derivative with respect to t. 
This system has two steady states: 

(ssl') A~o = ffo = C; = D~o = O, E~o = T l ,  

E1o = 1/e '  , 

A~) = ( T ' -  E~)/(1 + (1 /b '  + 1/c '  + 1/d ' ) ) ,  

(ss2') B~ = A'o /b ,  

Q = A /c, 

D'  o = A~o/d. 

The steady state ss2' will be physically meaningful if and only if 7'1 > 1/d.  This 
condit ion will be taken implicitly. 

The stability of the steady states is given by the eigenvalues of  the Jacobian 
matrix J of  the ODE evaluated at the steady states [1]. 

It is easy to show that J evaluated at ssl '  will always have at least one eigenvalue 
with a positive real part. Therefore, this steady state will always be unstable. Of 
course, it cannot  generate a Hopf  bifurcation. The calculation of  the Jacobian J 
evaluated at ss2' shows that systems with the same values for b, c, d,  and d.  A" will 
have the same stability pattern. It induces the following transformation,  which is 
also a simple scale change: 

A = A ' / A ' o ,  B = f f / A ~ o ,  C =  C'/A~o, D = D ' / A ~ o ,  

E = E ' / A ' o ,  r = T ' / A ' o ,  e = e ' .  . 
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Now we have the adimensional  system with which we will work: 

)t = - A  + e . A . E ,  

B = A - b . B ,  

C = b . B - c . C ,  

D = c . C - d . D ,  

E = d . D - e . A . E ,  

with the conservat ioncondi t ion  T = 1 + 1/b + 1/c + 1/d + 1/e. 
For  this system the physically meaningful  steady state is 

A 0 = l ,  

Bo = 1/b,  

(ss2) Co = 1/c,  

Do = 1 /d ,  

Eo = 1/e.  

The Jacobian J at ss2 is 

(1) 

0 0 0 0 e 

1 - b  0 0 0 

0 b - c  0 0 

0 0 c - d  0 

- 1  0 0 d - e  

The characterist ic polynomial  associated with J (Det[J - x .  I] = 0, where I is 
the 5 x 5 identity matrix) is 

x 5 q- x4(b q- c -t- d + e) + x3(bc q- bd + cd + e + be + ce + de) 

+ x2(bcd + be + ce + bce + de + bde + cde) + x(bce + bde + cde + bcde) = O. 

This polynomial  has one trivial root  due to total concentra t ion conservation.  It  
simply means  that  the system has its dynamics restricted to a hyperplane in the spe- 
cies concent ra t ion  space. 

Thus, the stability of  the dynamical  system will be given by the signs f rom the 
real parts  of  the solutions of  

X 4 -'[- al • x 3 "Jr" a2- x 2 -I- a3 • x n t- a4 = O, (2) 

where 

al = b + c + d + e ,  

a2 = bc + bd + cd + e + be + ce + de , 
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a3 = bcd + be + ce + bce + de + bde + cde , 

a4 = bce + bde + cde + bcde. 

Let us apply the Routh-Hurwitz  criterion to study the stability of the steady 
state [8]. 

Let R3 and R2 be the two R outh-Hurwitz determinants of eq. (2): 

al a3 0 

R3 = 1 a2 a4 

0 al a3 

and 

al  a3 
R2 = 1 a2 

Since the parameters al, a2, a3 and a4>0  and R2>0  V b, c, d, e>0 ,  ss2 will be 
unstable if and only if R3 < 0. At this point it is important to say that for a similar 
network with only four species the physically meaningful steady state is always 
asymptotically stable [8]. In that sense the present system seems to be the simplest 
system in its class to show non trivial behavior. 

It has been shown that the necessary and sufficient conditions for the Hopf  bifur- 
cation may be written in terms of Routh-Hurwitz determinants [11,12]. 

Let P = P(b, c, d, e) = R3 [appendix 1, eq. (a)]. In the case of system 1 the neces- 
sary and sufficient conditions for Hopf bifurcation reduce to 

P = 0 ,  

OP/Ob # O or OP/Oc # O or OP/Od # O or OP/Oe # O. 

The condition on partial derivatives is the transversality condition. From 
Thom's transversality theorem [1,17] it is known that this condition will be generic- 
ally fulfilled. Therefore, our main goal is to study the condition P = 0. 

Let 

~P= {(b,d,d,e);b,c,d,  eER+},  

)4 = {b,c,d,e)~(P;P(b,c,d,e)<O}, 

Z = ON. 

In the following section we will prove that 3V is a simply connected set. Then, in 
the next section, we use continuation methods [9,10] to calculate Z. We also give 
simple reasoning to show that the points of Z not representing a Hopf  bifurcation 
point belong, at most, to a zero measure set. That gives a complete description of 
the Hopfbifurcation set for eq. (1). 
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3. The  set 2q 

One may easily verify that P is invariant under any permutation among b, c 
and d. First we study the (b, c)-quadrant, i.e., we consider d and e given and we 
study the restriction of 3V to the first quadrant (b > 0, c > 0) of the (b, c)-plane. 
Indeed, by invariance under permutation, the conclusions are valid for (b, d) and 
(c, d)-quadrants. 

(i) The (b-c)-quadrant 
Take c -- r .  b. For fixed values of r we may study the sign variation of P along 

a ray coming from origin in the (b, c)-quadrant. P becomes 

P = c ~ . b S + f l . b a + f . b  3 + 6 . b 2 + e . b + ( ,  

where a,/3, 7, 6, e and ( are functions of d, e, r [appendix 1, eq. (b)]. 
In this case a,/3, e and ( >  0 V d, e, r > 0. Since only 7 and 6 may be negative, apply- 

ing Descartes' sign rule [13] one may prove that P will have at most two zeros for 
b > 0. So, P will be negative at most for a unique line segment along rays in the first 
(b, c)-quadrant (see fig. 1). 

Take c -- h/b. For fixed values ofh we may study the sign variation along hyper- 
bolas in the first (b, c)-quadrant. Multiplying P by b 3 (it will have no influence on 
P sign since b > 0) we have 

b 3 . p = a . b 6 + / 3 . b S + 7 . b n + 6 . b 3 + e . b 2 + ~ . b + r ] ,  

where a,/3, 7, 6, e, ( and 77 are functions of d, e, r [appendix t, eq. (c)]. 
In this case a,/3, (, ~7>OVd, e, h >0. 
Once again applying Descartes' sign rule, since only 7, 6 and e may be negative 

one proves that P will be negative at most for two disjoint regions in a hyperbola in 
the first (b, c)-quadrant. 

Fig. 1. Sign behavior of P along a ray in the positive (b-c)-quadrant. 
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As P is invariant under  permutat ion between b and c, if P(b0, co)< 0 then we 
have P(b0, co) = P(c0, bo) < 0. 

In the next paragraph we show that  P ( ~ ,  b0x/b-oS~, c0) ~< P(b0, co). 
The function P may  be written as 

P = Z aijbiei' 

where a,j = aij(e,d) and aij = aji. We will show that P(b0, c o ) -  P ( v / ~  • co, 
bo U - 

P(bo, co) - P(V'~o. co, X/~o" co) = Z ( a o ' / 2 ) ( b ~  + ~c ~  - 2(boco) (i+j)/2) 

i-j _ 2(boco)(i-j)/2) = Z(ai j /2)(boco)J(bio  - j  + c o 

= Z(a i j l2 ) (boco)J (b~  i-j)~2 - c~i-j)/2) 2 ' 

SO 

l'(bo, co) b4 oco, o). 

Under  the coordinate change c = h/b ,  the points ( x / ~ "  co, V~0- co) and (b0, co) 
belong to the same hyperbola.  But we cannot  have three disjoint negative regions of  
P on this hyperbola in the (b, c)-quadrant (see fig. 2). Therefore, this negative 
region will be unique and it will necessarily cross the (b, c)-quadrant  bissetrix. 

The bissetrix is a special ray (the one for which r = 1). Along this ray there may  
be at most  one line segment for which P < 0. 

So, we have proven that  in the (b, c), (b, d), (c, d)-quadrants  we will have at 
most  one simply connected set for which P < 0. 

b / 

# 

( a t3 )~a 

\ 

. P < 0  

I 
a ( , , , a )  la  ~a 

> 
O 

Fig. 2. Sign behavior of P along hyperbolas in the positive (b-c)-quadrant. a and/3 are any different 
positive real numbers. 



62 F.M. C. Vieira, P.M. Bisch / Hopfbifurcation 

(ii) The (b-c-d)-orthant 
Let P(b, c, d) < 0 for a given e, with b > c > d. By invariance under  permutat ion,  

P will have the same value, at least, at the points (b, c, d), (b, d, c), (c, b, d), (c, d, b), 
(d, b, c), (d, c, b). Moreover,  there are paths linking these points through (b, c), 
(b, d), (c, d)-quadrants  on which P has negative value, namely, 

(b, c, d) to (c, b, d) through a (b, c)-quadrant ,  

(c, b, d) to (d, b, c) through a (b, d) -quadrant ,  

(d, b, c) to (d, c, b) through a (c, d ) -quadrant ,  

(d, c, b) to (c, d, b) through a (b, c)-quadrant ,  

(c, d, b) to (b, d, c) through a (b, d ) -quadran t ,  

(b, d, c) to (b, c, d) through a (c, d ) -quadrant .  

Let Nbca be the set )q restricted to the (b, c, d)-orthant.  The set 3qbca will be a 3D 
solid a round the (b = c = d)-line. 

Indeed, the set )qbcd must  intersect the (b = c = d)-line. Suppose that  3qb~d does 
not  intersect the (b = c = d)-line. Then there is a cylinder around this line which 
also does not  intersect the set N'bca (3qbca is obviously an open set). I f  we take a (b, c)- 
quadran t  which intersect this cylinder the set )q restricted to this quadrant  cannot  
be simply connected. As the set )q restricted to a (b, c), (b, d), (c, d) -quadrant  must  
be a simply connected set, the set Nb~d will intersect the (b = c = d)-line. 

N o w  take c = b and d = b. P is of  the form 

P = a . b 6  + fl.bS + ~/.b4 +6.b3  +e .b2  + ~ . b +  ~?, 

where a,  r, -y, 6, e, ~ and r/are functions ore  [appendix 1, eq. (d)]. 
We have a, /3,  6, e, (, 77 > 0 V e > 0. By Descartes '  sign rule P will be negative 

only for a single interval in the b > 0 set. We can conclude that  the set ~fb~U is simply 
connected.  

( iii) The axis " e" 
A set X is simply connected if and only if every closed curve in X is contractible 

to a point  of  X [1 5,1 6]. 
We have already shown that for a fixed value of e the set 3q restricted to the (b- 

c-d)-orthant  is simply connected. The contractions referred above could be done 
through appropriate  quadrants.  

So for each value of e a closed curve in 3q can be contracted to a point. So, these 
closed curves become lines, and the set %f will not  be simply connected if and  only 
if these lines are not  connected, i.e., if there are at least two disjoint subsets of  the set 
E = {e; e > 0} for which ~bcd is not  the null set. 
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As ~bcd always intersect the (b = c = d)-line, it is sufficient to see whether  there 
are two disjoint subsets o f  E for which the intersection of  ~bcd and the (b = c 
= d)-line is not  the null set. 

Let  b -- c = d = l. We will s tudy the set N restricted to the (4 e)-quadrant .  
The polynomial  P becomes 

P = 8l 6 Jr- 25/5e + 24/4e 2 _ 314e + 8/3e 3 + 10/3e 2 + 9/2e 3 + 3 l e  3 . 

I f  l = e = 0 then P = 0. We may apply the well known Newton ' s  po lygon 
me thod  to s tudy branches of  solution of  the equat ion P = 0 near the origin [14]. 
The N e w t o n  polygon associated with equat ion 2 is shown in fig. 3. The point  (4,1) is 
the only one which corresponds to a negative coefficient in eq. (3). As it is a vertex 
at the b o t t o m  of  the Newton  polygon it may  lead to branches of  solutions of  
P = 0 at the origin. 

There are two branches e = 13/2 and e = 38-l 2. Close to the origin, they are the 
b o u n d a r y  of  a region in which P is negative (we will refer to this region as N)  
(fig. 4). 

We  will see now that the intersection of  3V with the (l, e ) -quadrant  is simply con- 
nected. This is the last step required to prove that N itself is a simply connected 
set. 

Take  a point  (6, Ca) outside N. Take a point  (ll, el) inside N such that  11 </2, 
el < e2. There are k, n > 0 such that ll = k .  ~ / 2  = k .  ~ (n = log(e2/el) / log(12/ l l ) ) .  
N o w  take two natural  numbers  o and m with the conditions m < n < o ,  o - m = 1. 

I f  we subst i tute l = k-  e ° or l = k .  e m in P we will always have at mos t  one negative 
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Fig. 3. Newton polygon associated with eq. (3). The black dots are associated with positive coeffi- 
cients. The white dot is associated with the negative coefficient. The axis define the exponents o f / a n d  

e, respectively, for each monomial. 
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) 

Fig. 4. Region N in the positive (e-0-quadrant. The P = 0 branches of solutions at the origin are indi- 
cated. 

coefficient. Once more,  by Descartes '  sign rule it means that  P will be negative at 
most  for a single interval on the set e > 0. 

I f  we take l = k .  e ~, P will have an intermediate  value between the cases where  
l = k .  e °, and l = k .  e". Therefore,  i f P  is negative at the point  (/2, e2), it cannot  be 
outside N. 

We conclude that  the set ~N is simply connected. 

4. T h e  h y p e r s u r f a c e  Z 

As N is simply connected and limited then Z is a dosed  hypersurface.  
The points of  Z for which 

0 P / 0 b = 0  and 0 P / 0 c = 0  and O P / O d = O  and c 0 P / 0 e - - 0  

are those for which Hopfb i furca t ion  does not  occur. 
Each one of  these conditions defines a hypersurface in R 4. These hypersurfaces 

are different analytical manifolds, so they will intersect at most  in a zero measure  
set. To see that  t a k e r  and g two different analytical functions f rom R to R. The 
f u n c t i o n f  - g is also analytical. The function h -- 0 is the only one analytical  func- 
tion to be null for a set with non-zero measure.  So, u n l e s s f  = g the f u n c t i o n f  - g 
will be null only in a zero measure  set. The same applies to analytical manifolds.  

In other  words, "a lmost  every" point in the hypersurface Z is a H o p f  bifurcat ion 
point  for some one of  the parameters  b, c, d or e. 
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2E-2 I I 

e = 0,0001 
100.d = 0.2 

1E-2 

C 

5E-3 

OE+O ' ' ' 
0E+0 5E-3 l E-2 2E-2 

b 

F i g .  5.  H y p e r s u r f a c e  Z t h r o u g h  s l i c e s  o f  c o n s t a n t  v a l u e s  f o r  d .  

To construct this hypersurface we calculate slices through fixed values of d. We 
have employed established numerical continuation methods [9,10]. The hypersur- 
face Z is shown in fig. 5. 

5. Conc lus ion  

In this paper we showed that it is possible to define completely the bifurcation 
set for a specific system. Of course, we do not claim that the line of investigation 
pursued here is the shortest one, but the mathematical tools we have employed are 
in the most part very elementary. The importance of this result is that the system 
studied here is the simplest one in its class to show non trivial behavior. A thorough 
comprehension of some basic systems may be of great help in the study of the 
more complex ones. 

Append ix  1 

Eq. (a): 
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P(b, c, d, e) = c3d2e + c2d3e + c3e 2 + c2de 2 + £3de 2 + cd2e 2 + 2c2d2e 2 

+ d3e 2 + cd3e 2 + ce 3 + c2e 3 + de 3 + 2cde 3 + c2de 3 + d2e 3 + cd2e 3 

+ b3(c2d + cd 2 + c2e + 2cde + d2e + e 2 + ce 2 + de 2) + b2(c3d + 2c2d 2 

+ cd 3 + c3e - cde + 4c2de + 4cd2e + d3e + ce 2 + 2c2e 2 + de 2 + 4cde 2 

+ 2d2e 2 + e 3 + ce 3 + de 3) + b(c3d2c 2 + d 3 _ c2de + 2c3de - cd2e 

+ 4c2d2e + 2cd3e + c2e 2 q- c3e 2 + cde 2 + 4c2de 2 + d2e 2 + 4cd2e 2 

+ d3e 2 + e 3 + 2ce 3 + c2e 3 + 2de 3 + 2ode 3 + d2e 3) . 

Eq. (b): 

P(b, d, e, r) = bS(r2d + r3d + r2e + r3e) 

+ b4(rd 2 + 2r2d 2 + rad 2 + 2rde + 4r2de + 2r3de + re 2 + 2r2e 2 + r3e 2) 

+ b3(rd 3 + r2d 3 - rde - r2de + d2e + 4rd2e + 4r2d2e + r3d2e + e 2 

+ re 2 + r2e 2 + rae 2 + de 2 + 4rde 2 + 4r2de 2 + fade 2 + re 3 + r2e 3) 

+ b2(-(rd2e)  + d3e + 2rd3e + r2d3e + de 2 + rde 2 + r2de z 

+ 2d2e 2 + 4rd2e 2 + 2r2d2e2 + e 3 + 2re 3 + r2e 3 + de 3 + 2rde 3 + r2de 3) 

+ b(d2e 2 + rd2e 2 + dae 2 + rd3e 2 + e 3 + re 3 + 2de 3 + 2rde 3 + d2e 3 + rd2e 3) 

+ d3e 2 + de 3 + d2e 3 . 

Eq. (c): 

b 3- P(b,  d, e, h) = b6(dZe + e 2 + de 2) 

+ bS(hd 2 + 2hde + d3e + he 2 + de 2 + 2d2e 2 + e 3 + de 3) 

+ b4(h2d + hd  3 + h2e - h d e  + 4hd2e + he 2 + 4hde 2 + d2e 2 

+ d3e 2 + e 3 + h e  3 + 2de 3 + d2e 3) 

+ b3(2h2d 2 + 4h2de - hd2e + 2hd3e + 2h2e 2 + hde 2 + 4hd2e 2 

+ dae 2 + 2he 3 + de 3 + 2hde 3 + d2e 3) 

+ b2(h3d + hZd 3 + h3e _ hZde + 4h2d2e + h2e 2 + 4h2de 2 

+ hd2e 2 + hd3e 2 + he 3 + h2e 3 + 2hde 3 + hdZe 3) 

+ b(h3d 2 + 2h3de + h2d3e + h3e 2 + hZde 2 + 2hZd2e 2 + hZe 3 

+ h2de 3) + h3d2e + h3e 2 + h3de 2 . 

Eq. (d): 

P = 8b 6 + 24bSe + 24bge 2 _ 3bae + 8b3e 3 + lOb3e 2 + 9b2e 3 + 3be 3 . 
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